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Abstract— we compute the lower bounds on higher-
order nonlinearities of monomial partial-spreads type 

bent Boolean function ),()( 12
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22 nn FFx   n is an even positive integer and 

inverse Boolean function ),()( 22
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where ,, *

22 nn FFx   n is any positive integer. We 

also show that our lower bounds are better then the 
Carlet’s bounds 2008. 
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INTRODUCTION 

Suppose 2F is a prime field consisting two element 0 

and 1. The field nF
2

 is an extension field over 2F  of 

degree n. nF
2

 is vector space isomorphic to nF2   which is 

an n-dimensional vector space over 2F . Therefore, nF2

can be viewed as nF
2

. Boolean function on n-variable is a

mapping from nF2  to 2F . nB  denotes the collection of 

all n-variable Boolean functions. The number of one's in 
n

n Fxxxx 221 ),...,,(  is called the Hamming weight 

and denoted as 
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where 2F . The algebraic degree of f denoted as 

deg(f), is the maximum number of one's in the binary 

expansion of a such that 0a . The Hamming distance 

between two Boolean functions is the number of places 
where functional value of functions does not match. 
Boolean function of algebraic degree one or less is said to 
be affine.   

Definition 1: Suppose nBf  . For every integer 

nr 0 , the minimum value of the Hamming distance 

of f from all n variable Boolean functions of degree at most 
r )1( r  is called the  rth-order nonlinearity of  f and 

denoted by )( fnlr . The sequence of values )( fnlr , for 

r ranging from 1 to n-1, is said to be nonlinearity profile of 
Boolean function  f.  

The nonlinearities of Boolean functions is an important 
aspect in the security of the stream ciphers as well as block 
ciphers. In symmetric ciphers, Matsui [24] found the 
relationship between explicit attack and nonlinearity. The 

best asymptotic known upper bound [6] on )( fnlr  is 

given as 
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Kavatiansky and Tavernier [9, 18]  proposed an algorithm 
to compute the  second-order nonlinearities by using list 
decoding algorithms for higher-order Reed-Muller codes. 
Later it was improved and implemented by Forquet and 
Tavernier [10]. This algorithm works efficiently   for 

11n  and for 13n  for some particular functions.  No 

efficient algorithm is proposed to compute the rth-order 
)2( r nonlinearity of Boolean functions. Although, some 

theoretical results on the lower bound of higher order 
nonlinearity are known. Garg and Khalyavin [14] have 
found the higher-order nonlinearities of Kasami function. 
The third-order nonlinearities for a subclass of Kasami 
functions was found in [15]. For more results in this 
direction we refer to [11, 12, 13, 14, 20, 27, 28, 29]. Carlet 
[4] provides a technique of computing lower bounds of 
higher-order nonlinearities of Boolean functions 
recursively. In this paper, we use technique developed by 
carlet [4] to compute the lower bounds on higher-order 
nonlinearities of monomial partial-spreads function 
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22 nn FFx   n is an 

even positive integer and inverse Boolean function 
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n

xTrxg n   where ,, *

22 nn FFx   n is 

any positive integer. We also show that our lower bounds 
are better than the Carlet’s bounds 2008. 
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PRELIMINARIES 

Definition 2: The Walsh transform of nBf  at 
nF2  is defined as  
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The multiset ]:)([ 2
n

f FW  is called the Walsh 

spectrum of f. The nonlinearity in terms of Walsh spectrum 
is defined as follows 
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Definition 3: The derivative of nBf   with respect to 

nF
2

  is a Boolean function and defined as 

)()()( xfxfxD   for all nFx
2

 . 

Definition 4: Suppose laaa ,...,, 21 is a basis of l-

dimensional subspace V of nF
2

. The lth derivative of f 

with respect to V is a Boolean function defined as 
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2
 . 

 The lth derivative of  f  is independent of the choice of 

the basis of  V. The trace function is a mapping from nF
2

 

into 2F  and defined as  
12 222

1 ...)(
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 For given any nFvu
2

,  , )(1 uvTr n is called an inner 

product between u and v.  The general linear group 

),( 2FmGL is the collection of all mm  non-singular 

matrix with entries either 0 or 1. In other words, this is the 

collection of all invertible linear transformations on nF2 .  

A positive integer t can be represented in its binary 

expansion as 
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i
it
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2 . We define a partial order denoted 

by

  between any two positive integers as follows: t and 

't satisfy 'tt

  if and only if 

'
ii tt   for all i. If 'tt


  

but 'tt  , then it is denoted by 'tt  .  

Definition 5: Boolean function nBf   is called affine 

equivalent to nBh  iff there exists ),,( 2FnGLM , 

22 ,, FFc n    such that )()( cMxfxh   

  x  for all nFx
2

 ,  where x  denotes  an 

inner product of   and x . 

 
Lemma 1. ([1], Propoition1):  Suppose U is a vector 

space over a field qF  of characteristic 2 and qFUR :  

be a quadratic form. Then the dimension of U and the 
dimension of the kernel of R have the same parity. 

The Walsh spectrum of a quadratic Boolean function 
(algebraic degree at most 2) is completely characterized by 
the dimension of the kernel of the bilinear form associated 
to it. For more description, we refer to [1, 23]. The bilinear 
form associated with a quadratic Boolean function f on n-
variables is defined as 

)()()()0(),( vufvfuffvuB   The kernel 

[1, 23] of ),( vuB  is the subspace of nF
2

 defined by 

 .,0),(:
22 nn FvallforvuBFuf   

 
Definition 6:    ([21], Page 99):  A polynomial of the 

form 
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)(   is called a Linearized polynomial 

(q-polynomial) over nq
F  where the coefficients i  

belongs to  an extension field nq
F  of qF .  

Carlet [4] proved  the following useful result. 
Proposition 1. ([4], Proposition 2) Suppose f  is  a n-
variable  Boolean function and r is  a positive integer less 
than n, we have 
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in terms of higher-order derivatives 
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Lemma2. [1 23] Let ),( vuB  be a bilinear form 

associated to a quadratic Boolean function 22
: FFf n  . 

Then the Walsh spectrum of f depends only on the 

dimension, k, of the kernel, f  of ),( vuB . The weight 

distribution of the Walsh spectrum of  f  is: 
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We denote a condition  mcck ..,,, 1  such that 

1. 



n

i
i kc

0

 

2. 0ic for all .,..., mii  

3. 0 ji cc  for all mji 1 where 

 means bitwise AND operations. 

 
This condition means that non-zero bits from binary 
representation of k are split to n non-empty non-intersecting 
groups. 
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Lemma 3.  [14] For all 0t and 0k  
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where tV is the subspace spanned by taa ,...,1 .  

 

MAIN RESULTS 

Theorem1. Let ),()( 12
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Proof: Let b be any positive integer. We know 

that 12...2212 21   bbb . Therefore there are b 

ones in the binary form of )12( b .  Let 12 2 
n

p . So 

the algebraic degree of )(xf  is
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. By Proposition 1, we 

get 
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By Lemma 3, 
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 Clearly 12 2 
n

p has 
2

n
 ones in its binary form and 

each 0i  for all i . Therefore each i must have at 

least 1  one in its  binary form. Therefore 0  must have at 

most 2ones in binary form. If the above Boolean function is 
quadratic.  Then the  nonlinearity  of 
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is equivalent to the  

nonlinearity of  ).(xh  where )(xh can be obtained by 

omitting constant and all the terms of 1)( 0 wt  in the 

sum. The bilinear form ),( yxB  associated with )(xh  

is given as 

).()()()0(),( yxhyhxhhyxB    

Then we will have  
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Due to the linear property of trace function, it can be 
written as 
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The kernel of ),( yxB  is  .0)(:
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The number of elements in the kernel f  is equal to the 

number of zeros of  )(xP  , equivalently, the number of 

zeros of
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This is a linearized polynomial in x. So by Lemma 1, 

),2(  nk since n is even.  Therefore, for all nFx
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we have 
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Hence by equation 1.0 
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Theorem2. Consider the Boolean function 
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Proof: We know that 
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degree of )(xg  is 1n . By Proposition 1, we have 
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Each i  must have at least 1 one in its binary form 

because 22'  np  has 1n  ones in its binary form  

and  each 0i  for all i. Therefore 0  must have at most 

2 ones in binary form. If the above Boolean function is 
quadratic. Then the nonlinearity 

of ))((...(
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 is  equivalent to the 

nonlinearity of  )(' xh   where )(' xh    can be obtained 

by omitting constant and all the terms of 1)( 0 wt  in 

the sum. The bilinear form  ),( yxB  associated with 
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Then we get 
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Clearly,  )(' xL  is a linearized polynomial in x. The degree 

of )(' xL  will be at most degree 12 n . Hence by Lemma 1, 
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Remark 1. [5, 6] It is to be noted that Boolean function 
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2nF  Therefore, the lower bounds of nonlinearities of 

),( yxf and )(xg  are same as the  lower bounds of 

nonlinearities ),( yxf and )(xg   respectively. 

 
COMPARISON 

It is proved in [5] that the higher-order nonlinearity of 
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It is also proved in [4] that the higher-order nonlinearity 

of Inverse Boolean Function ),()( 22
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We give the lower bound of Dillon bent function obtained 
in [5] and the lower bound  monomial partial-spreads 
function obtained in 1 in  Table 1.  

 
 
 
 

r, n 
3, 
8 

4, 
10 

5, 
12 

6, 
14 

7, 
16 

8, 
18 

9, 
20 

10, 
22 

Lower 
Bound 

obtained 
in [5] 

0 0 0 0 0 0 0 0 

Lower 
bound 

obtained 
in 

Theorem 
1 

16 32 64 128 256 512 1024 2048 

Table1. Comparison of the Lower bounds of higher-order 
nonlinearities . 

 
In the case of inverse Boolean function, the lower bound 

of )2(  nr th-order nonlinearity on n-variables 

obtained by Carlet [4] are trivial (negative) while we find 
the lower bounds of )2(  nr th-order nonlinearity on 

n-variables is 2, where (n = 4, 5, 6, 7, ...). Therefore, it 
shows that our obtained lower bounds are better than the 
Carlet's bounds [4, 5]. 
 
 

CONCLUSION 
In this paper we compute   the lower bounds of higher order 
nonlinearity of monomial partial-spreads  type Boolean 
function and inverse Boolean Function. In both cases, the 
lower bounds obtained by  Carlet's bounds [4, 5] in both 
cases are trivial. Our lower bounds obtained in Theorem 1 
and Theorem 2 are better then Carlet's bounds. 
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